If you get stuck, you might try to notice:

- Key words from the problem.
- Quantities or measurements (give each unknown a name).
- Relationships between quantities.
- Information that is not given in the problem but that might be related.

Your wonderings may include:

- What does this mean?
- How does this situation work?
- What is a good way to express that?
- I wonder what will happen if ...
- Will this pattern continue?
- How will I know if this is true?
- Under what circumstances is this true?
- Does it have to be that way?
- Is there another way to think of it?

If you get stuck, you might try to notice:

- Key words from the problem.
- Quantities or measurements (give each unknown a name).
- Relationships between quantities.
- Information that is not given in the problem but that might be related.

Your wonderings may include:

- What does this mean?
- How does this situation work?
- What is a good way to express that?
- I wonder what will happen if ...
- Will this pattern continue?
- How will I know if this is true?
- Under what circumstances is this true?
- Does it have to be that way?
- Is there another way to think of it?

Problem-Solving Techniques

1. Successful Flailing

Mess around until you get somewhere. Make a list of all of the mathematical information and relationships you notice and everything you are wondering.

2. Do SOMETHING!

Don't just sit there staring blankly at the problem. What do you know, or what can you do?

3. Engage in Wishful Thinking

I could solve the problem if only it were "this" instead of "that." Where does that thinking lead you?

Problem-Solving Techniques

1. Successful Flailing

Mess around until you get somewhere. Make a list of all of the mathematical information and relationships you notice and everything you are wondering.

2. Do SOMETHING!

Don't just sit there staring blankly at the problem. What do you know, or what can you do?

3. Engage in Wishful Thinking

I could solve the problem if only it were "this" instead of "that." Where does that thinking lead you?

Problem-Solving Techniques

1. Successful Flailing

Mess around until you get somewhere. Make a list of all of the mathematical information and relationships you notice and everything you are wondering.

2. Do SOMETHING!

Don't just sit there staring blankly at the problem. What do you know, or what can you do?

3. Engage in Wishful Thinking

I could solve the problem if only it were "this" instead of "that." Where does that thinking lead you?

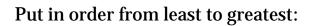
If you get stuck, you might try to notice:

- Key words from the problem.
- Quantities or measurements (give each unknown a name).
- Relationships between quantities.
- Information that is not given in the problem but that might be related.

Your wonderings may include:

- What does this mean?
- How does this situation work?
- What is a good way to express that?
- I wonder what will happen if ...
- Will this pattern continue?
- How will I know if this is true?
- Under what circumstances is this true?
- Does it have to be that way?
- Is there another way to think of it?

$$|x+y|+|x-y|=2$$

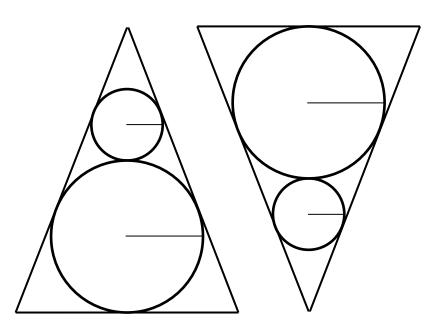

$$|x+y|+|x-y|=2$$

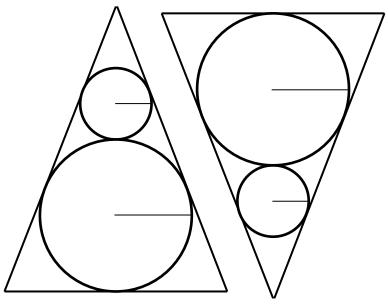
$$|x+y|+|x-y|=2$$

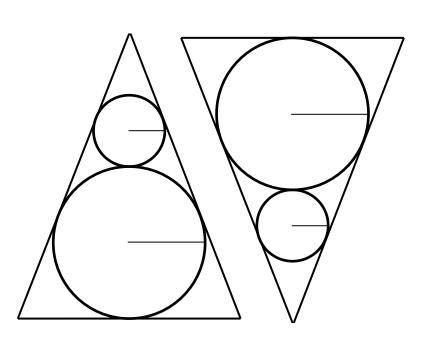
$$|x+y|+|x-y|=2$$

$$|x+y|+|x-y|=2$$

$$|x+y|+|x-y|=2$$


$$10^8$$
, 5^{12} , and 2^{24}


Put in order from least to greatest:


$$10^8$$
, 5^{12} , and 2^{24}

Put in order from least to greatest:

$$10^8$$
, 5^{12} , and 2^{24}

